Uniformity of Stably Integral Points on Principally Polarized Abelian Varieties of Dimension
نویسنده
چکیده
The purpose of this paper is to prove, assuming that the conjecture of Lang and Vojta holds true, that there is a uniform bound on the number of stably integral points in the complement of the theta divisor on a principally polarized abelian surface defined over a number field. Most of our argument works in arbitrary dimension and the restriction on the dimension ≤ 2 is used only at the last step, where we apply Pacelli’s stronger uniformity results for elliptic curves. Preliminary version, February 1, 2008.
منابع مشابه
ar X iv : m at h / 05 03 34 0 v 1 [ m at h . A G ] 1 6 M ar 2 00 5 WEYL GROUPS AND ABELIAN VARIETIES
Let G be a finite group. For each integral representation ρ of G we consider ρ−decomposable principally polarized abelian varieties; that is, principally polarized abelian varieties (X,H) with ρ(G)−action, of dimension equal to the degree of ρ, which admit a decomposition of the lattice for X into two G−invariant sublattices isotropic with respect to IH , with one of the sublattices ZG−isomorph...
متن کاملSESHADRI CONSTANTS ON ABELIAN VARIETIES By MICHAEL NAKAMAYE
We show that on a complex abelian variety of dimension two or greater the Seshadri constant of an ample line bundle is at least one. Moreover, the Seshadri constant is equal to one if and only if the polarized abelian variety splits as a product of a principally polarized elliptic curve and a polarized abelian subvariety of codimension one. We also examine the case when the Seshadri constant is...
متن کاملPrym varieties and the Schottky problem for cubic threefolds
A theorem of Mumford’s states that for a smooth cubic threefold X, the intermediate Jacobian JX is a principally polarized abelian variety of dimension 5 whose theta divisor has a unique singular point, which has multiplicity three. This talk describes joint work with R. Friedman, in which we prove a converse: if A is a principally polarized abelian variety of dimension 5 whose theta divisor ha...
متن کاملThe a-number Stratification on the Moduli Space of Supersingular Abelian Varieties
We study the moduli space Sg(a) of principally polarized supersingular abelian varieties of dimension g with a-number a. We determine the dimension of each irreducible component of Sg(a) and the number of irreducible components. MSC: primary: 14K10; secondary: 11G10; 14L05
متن کاملFourier-mukai Transforms for Abelian Varieties and Moduli of Stable Bundles
We classify Fourier-Mukai transforms for abelian varieties. In the case of a principally polarized abelian surface these are then used to identify a large family of moduli spaces of stable vector bundles as Hilbert schemes of points on the surface.
متن کامل